CuZn37Mn3Al2PbSi

Sondermessing

kompetent und kundennah seit 1885

Chemische Zusammensetzung* nach DIN EN								nach DIN EN		
	Legierungsbestandteil					Zulässige Beimengungen				
	Cu	Zn	Mn	Al	Pb	Si	Fe	Ni	Sn	Sonstige
min.	57,0	Rest	1,5	1,3	0,2	0,3	-	-	-	-
max.	59,0	-	3,0	2,3	0,8	1,3	1,0	1,0	0,4	0,3

^{*}Massenanteil in %

Bezeichnun	g	Produktnormen				
EN	CuZn37Mn3Al2PbSi CW713R	Ü	EN 12164 EN 12165			
UNS	C67420	Profil	EN 12167			

Werkstoffeigenschaften und typische Anwendungen

CuZn37Mn3Al2PbSi ist ein Sondermessing, das eine sehr hohe Verschleissbeständigkeit, durch in das Gefüge eingelagerte Silizide, aufweist. Dieser Werkstoff wird für Gleitlager und Ventilführungen, sowie für Konstruktionsteile im Maschinenbau eingesetzt.

CuZn37Mn3Al2PbSi eignet sich ebenfalls gut für Warmpressteile, bei denen höhere Festigkeitswerte, sowie höhere Verschleisswiderstände gefordert werden.

Physikalische Eigenschaften*		
Elektrische Leitfähigkeit	MS/m %IACS	7,8 13
Wärmeleitfähigkeit	W/(m·K)	63
Wärmeausdehnungskoeffizient (0-300°C)	10 ⁻⁶ /K	20,4
Dichte	g/cm ³	8,12
Elastizitätsmodul	GPa	93
*D' 1 / 1 / 1 / 1		

^{*}Richtwerte bei Raumtemperatur

Bearbeitungshinweise	
Formgebung	
Zerspanbarkeit (CuZn39Pb3 = 100%)	50%
Kaltumformbarkeit	weniger
Warmumformbarkeit	sehr gut
Oberflächenbehandlung	
Polieren, mechanisch	gut
Polieren, elektrolytisch	weniger
Galvanisieren	mittel
Verbindungsarbeiten	
Widerstandsschweissen	gut
Schutzgasschweissen	gut
Gasschweissen	mittel
Hartlöten	weniger
Weichlöten	weniger
Wärmebehandlung	
Schmelzbereich	875-910°C
Warmumformen	600-700°C
Weichglühen (1-3h)	500-650°C
Therm. Entspannen (1-3h)	350-450°C

Korrosionsbeständigkeit

Sondermessinge sind durch Legierungszusätze allgemein sehr gut korrosionbeständig. CuZn37Mn3Al2PbSi weist eine gute Beständigkeit gegen organische Stoffe, neutrale oder alkalische Verbindungen auf.

CuZn37Mn3Al2PbSi

Sondermessing

kompetent und kundennah seit 1885

Mechanische Eigenschaften nach EN										
Rundstangen/ regelmäßige Kantstangen nach DIN EN 12164										
Zustand	ustand Durchmesser		Schlüsselweite		Zugfestigkeit R _m	Dehngrenze R _{p0,2}		Bruchdehnung %		
	[mm]		[mm]		[MPa]	[MPa]		A100	A11,3	Α
	von	bis	von	bis	min.	min.	max.	min.	min.	min.
M	Α	lle	Α	lle	wie gefertigt - ohn	e Vorgabe n	nechanische	r Eiger	nschaf	ten
R540	5,0	80,0	5,0	60,0	540	280	-	-	12	15
R590	5,0	50,0	5,0	40,0	590	370	-	-	8	10

Die Angaben dieses Datenblatts dienen der Beschreibung der entsprechenden Materialien und sind keine Eigenschaftszusicherungen. Abgesehen von Vorsatz oder grober Fahrlässigkeit übernehmen wir für die inhaltliche Richtigkeit keine Haftung.